

COASTAL RELIABILITY

SOLUTIONS

PLANNING JOURNAL

Honeywell
Sundyne

RELIABILITY REALIZED

205 Tower Drive
Oldsmar, Florida 34677

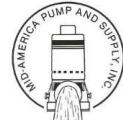
Phone: (813) 749-7168
Fax: (813) 749-7175

Email: sales@coastalreliability.com

VALUABLE PUMP FORMULAS

PRESSURE	PIPE VELOCITY	CENTRIFUGAL PUMPS
Feet of Water X 0.4333	=PSI	
(PSI X 2.31)/Sp. Gr.	=Feet of Water	
(Ft. Head x Sp. Gr.)/2.31	=PSI	
PSI x 6.9	=kPa	
ATM x 14.7	=PSI	
ATM x 33.9	=Feet of Water	
ATM x 760	=mm Hg	
kg/cm ² x 142	=PSI	
Meters of Water x 1.42	=PSI	
Bar x 14.5	=PSI	
Inches of Hg x 0.491	=PSI	
Velocity in Feet per Second:	GPM x 0.321 Pipe Area in Square Inches	Liquid HP: $\frac{GPM \times ft. of Head \times Sp. Gr.}{3960}$
Rule of Thumb:	Typically keep pipe velocities around 10 ft/second for good results.	Brake HP: $\frac{GPM \times TDH \times Sp. Gr.}{3960 \times Pump Efficiency}$
Suction Piping:	Generally, have piping in one plane from source tank and have a straight run at least 10 times the pipes diameter leading into the pump suction.	Efficiency $\frac{BHP}{Motor Efficiency}$
Pipe Size:	Doubling the diameter of a pipe increases its capacity 4 times.	Estimated effects of viscosity on Centrifugal Pumps SSU FLOW HEAD EFFICIENCY
		35 100% 100% 80%
		500 95% 98% 80%
		1000 92% 97% 70%

ROTARY POSITIVE DISPLACEMENT PUMPS	APPROXIMATE RPM @ FULL LOAD - FOR MEDIUM SIZED MOTORS
Liquid HP: $\frac{GPM \times PSI}{1714}$	Poles RPM (60 Hz) Sync Speed RPM (50 Hz) Sync Speed
Volumetric Efficiency: $\frac{Actual GPM}{Theoretical GPM}$	2 3500 3600 2850 3000
Overall Pump Efficiency: $\frac{LHP}{BHP}$	4 1750 1800 1450 1500
Mechanical: $\frac{Overall Pump Efficiency}{Volumetric Efficiency}$	6 1150 1200 950 1000
	8 850 900 700 750
	Synchronous Speed (no load) Formula $RPM = \frac{Frequency(Hz) \times 120}{Number of Poles}$


INSULATION CLASS NEMA I16 SERVICE FACTOR	RULES OF THUMB FOR MOTORS
A 150 °C 221 °F	A motor develops 1.5 ft-lbs per HP @ 3600 RPM
B 130 °C 266 °F	A 3-phase motor draws 1.00 Amp per HP @ 557 Volts
F 155 °C 311 °F	A motor develops 3.0 ft-lbs per HP @ 1800 RPM
H 180 °C 356 °F	A 3-phase motor draws 1.25 Amp per HP @ 460 Volts
	A motor develops 4.5 ft-lbs per HP @ 1200 RPM
	A 3-phase motor draws 2.50 Amp per HP @ 230 Volts
Maximum motor temperature including temperature rise plus 40°C ambient temperature	

PARTICLE SIZE COMPARISON	ATMOSPHERIC PRESSURE	VISCOOSITY	AFFINITY LAWS FOR CENTRIFUGAL PUMPS
Mesh Inch Micron	Altitude in Feet PSIA	CONVERSIONS:	These formulas can be used to estimate capacity, head and BHP for a pump speed or impeller diameter when a curve is not readily available:
3250 .0002 6	0 14.70	SSU* = Centistokes x 4.55	1. Flow is directly proportional to the ratio of impeller speed: $GPM_i = \frac{GPM_o \times RPM_i}{RPM_o}$
1600 .0005 14	100 14.64	Degrees Engler* = Centistokes x 0.132	2. Head is directly proportional to the square of the ratio of impeller speed: $Head_i = Head_o \times \left(\frac{RPM_i}{RPM_o} \right)^2$
750 .0010 25	300 14.54	Sec. Redwood 1* = Centistokes x 4.05	3. The HP is directly proportional to the ratio of impeller speed: $BHP_i = BHP_o \times \left(\frac{RPM_i}{RPM_o} \right)^3$
325 .0016 40	500 14.43	1 Stoke = 100 Centistokes	4. Flow is directly proportional to the ratio of impeller diameter: $Flow_i = Flow_o \times \left(\frac{Impeller Diameter_i}{Impeller Diameter_o} \right)^2$
250 .0024 62	700 14.33	1 Poise = 100 Centipoises	5. Head is directly proportional to the square of the ratio of impeller diameter: $Head_i = Head_o \times \left(\frac{Impeller Diameter_i}{Impeller Diameter_o} \right)^3$
200 .0029 74	1,000 14.17	Centistokes = Centipoise/Sp. Gr.	6. The HP is directly proportional to the cube of the ratio of impeller diameter: $BHP_i = BHP_o \times \left(\frac{Impeller Diameter_i}{Impeller Diameter_o} \right)^3$
180 .0033 85	1,500 13.92	*Where Centistokes are greater than 50	
150 .0041 100	2,000 13.66	Definitions: Newtonian fluids are unaffected by shear, e.g. water mineral oil.	
120 .0046 118	3,000 13.17	Non-Newtonian fluids are affected by shear (5 types):	
100 .0055 149	4,000 12.69	Bingham-Plastic fluids have an exact shear point which once exceeded, viscosity decreases.	
80 .0070 179	5,000 12.23	Pseudo-Plastic fluids have no exact yield point, but instead, viscosity decreases as the magnitude of shear rate increases.	
50 .0117 300	7,000 11.34	Dilatant fluids viscosity increases as the magnitude of the shear rate increases e.g. printing ink, candy compounds.	
40 .0150 385	10,000 10.11	Thixotropic fluids decrease in viscosity both in relation to the shear magnitude and the period of time subjected to shear. Viscosity might also depend on a previous shear condition, e.g. drilling mud, starches, paint.	
30 .0200 513	15,000 8.29	Rheoplastic fluids increase viscosity both in relation to the shear magnitude and the period of time subjected to shear, e.g. some greases.	
24 .0280 718	20,000 6.76		
20 .0340 872	25,000 5.45		
18 .0390 1000	30,000 4.36		
15 .0450 1154	40,000 2.72		
14 .0510 1308	50,000 1.68		
12 .0600 1538	60,000 1.04		
10 .0750 1923			
8 .0970 2488			
6 .1320 3385			
4 .1590 4077			
2 .2030 5205			
1 Micron = 10^{-6} Meters			
1 Micron = 3.9×10^{-5} inch			

PROUDLY REPRESENTING

INDUSTRIAL & MUNICIPAL PUMPS - MECHANICAL SEALS - MECHANICAL PACKING
NON-METALLIC TANKS - HEAT EXCHANGERS - COMPRESSORS

RELIABILITY REALIZED

Emergency 24 Hr. Service

Technical Support • Design • Installation • Fabrication • Repair

Visit our Website: www.coastalreliability.com E-Mail: sales@coastalreliability.com

PUMPS	Abaque	Industrial Hose Pumps (Peristaltic)
	Ansimag	ANSI Non-Metallic Pumps, Sub-ANSI Non-Metallic, Self-Priming Non-Metallic Pumps and Non-Metallic Mag-Drive Pumps
	Aplex Myers	Medium and Heavy Duty Reciprocating Pumps (up to 5500 PSI and up to 600 GPM)
	Aurora	ANSI Centrifugal Pumps, Regenerative Turbine Pumps, End Suction Pumps, Inline Pumps, Multi-Stage Vertical Pumps, Split Case Pumps, Boiler Feed Pumps, Sump Pumps, Sewer Pumps, Booster Systems and Condensate Systems
	Blackmer	Positive Displacement Sliding Vane Pumps, Mouvex CIP Pumps, System One Pumps, Mag-Drive Pumps, Abaque Peristaltic Hose Pumps, Horizontal and Vertical Pumps and Vortex Pumps
	Fairbanks Nijhuis	Internal Gear Pumps, Mag-Drive Gear Pumps, Chemical Gear Pumps, Asphalt Gear Pumps
	Grindex	Turbine Pumps, Split Case Pumps, Vertical Inline Pumps, Propeller Pumps, Solids-Handling Pumps, Submersible Pumps and Fire Pumps
	HMD Kontro	Dewatering Pumps and Electric Submersible Pumps (up to 370' and up to 5200 GPM)
	Jesco Pump (Lutz)	Metallic Mag-Drive Pumps and High Pressure Mag-Drive Pumps
	Landustrie	Industrial and Municipal Metering Pumps, Drum Pumps, AOD Pumps and Non-Metallic Pumps
	Layne Mid-America	Submersible Pumps, Centrifugal Pumps, Vortex Pumps, Screw Pumps and Submersible Mixers
	Megator / P2K	Vertical Pumps and Turbine Pumps
	Myers	Sliding Shoe Pumps, Rotary Lobe Pumps, Floating Strainers, Oil Recovery Units & Skimmers, Pneumatic Diaphragm Pumps and Double Diaphragm Pumps
	Nikkiso / LEWA	Submersible Pumps, Centrifugal Pumps, Vortex Pumps and Self-Priming Pumps
	Pitbull Pumps	Non-Seal® Pumps, Canned Motor Pumps, API-685 Hydraulically Actuated Diaphragm Pumps
	Summit Pump	Air-Operated Positive Displacement Pumps
	Sundyne / Marelli	ANSI Pumps, Regenerative Turbine Pumps, Self-Priming Pumps, Trash Pumps, Slurry Pumps, Progressive Cavity Pumps, Split Case Pumps and Aftermarket Parts
	Sundyne / Sunflo	Heavy Duty Split Case API 610 Pumps, Multi-Stage Pumps, End-suction Horizontal Single and Double Volute Pumps, Axially Split Pumps and Submersible Pumps
	Versa-Matic	High Speed/High Pressure Pumps, API Pumps, High Speed Compressors, Blowers and Custom Integrated Skid Systems
	Vertiflo Pumps	AODD Pumps (Bolted, Clamped, Non-Metallic, Metallic and Sanitary 3A)
MECHANICAL SEALS, PACKING & SEALING DEVICES	Flex-A-Seal	Vertical Vortex Pumps, Cantilever Pumps, High Chrome Iron Pumps, Centrifugal Pumps and Self-Priming Pumps
	Palmetto	Mechanical Seals, Packing, Gaskets and OEM Quality Repairs of All Types and Manufacturers
	Seal Pots	Triple Lip Mechanical Seals and Dry Run Mechanical Seals
HEAT EXCHANGERS	Hexonic	Pump and Valve Packing (Graphite, GFO Fiber, PTFE, Carbon, Phenolic and more), Custom Cut and Sheet Gasketing and Non-Asbestos Gasketing
		Barrier Fluid Pots (ANSI/API, Heat Exchangers, Forced Circulation Loop Systems)
COMPRESSORS	Blackmer	Shell & Coil, Shell & Tube, Brazed Plate, SafePlate Double Wall, Plate & Frame, CIP/3A Sanitary, TEMA, Custom and Bio-Mass Heat Exchangers
	PPI	Reciprocating Compressors, Oil-Free Compressors and Single and Double Cylinder Compressors
	Sundyne	Sealless Diaphragm Compressors
TANKS	Blackmer	Centrifugal Compressors, Integrally Geared Compressors, Multi-Stage Compressors and Vertical Line Mounted Compressors
	Allen Industries	Fiberglass Reinforced Plastic Tanks and Repair Service
EXPANSION JOINTS	Assmann	Polyethylene Tanks, Linear and Crosslink, Single Wall Tanks, Double Wall Tanks, Conical Bottom Tanks, Vertical and Horizontal Tanks, Full Drain (FDO) Tanks, Chemical Feed Systems and Secondary Containment Tanks (ISO Certified, NSF Approved for Water and Chemical Storage)
	FlexHose	Metal Bellows Expansion Joints and Custom Designed Expansion Joints
DAMPENERS	LUTZ Jesco	Pulsation Dampeners, Suction Stabilizers, Surge Absorbers and Expansion Compensators
	Versamatic	
VALVES	Maric Valves	Precision Flow Control Valves and Constant Flow Valves (Regardless of Pressure)
	Valves	Ball Valves, Butterfly Valves, Flapper Valves, Gate Valves, 3-Way Valves, Pinch Valves, Knife Valves, Sanitary Valves, Back Pressure and Pressure Relief Valve

205 Tower Drive • Oldsmar • Florida • 34677 • 813.749.7168 Office • 813.749.7175 Fax

DAILY NOTES / PROJECT NAMES:

 COASTAL RELIABILITY SOLUTIONS LLC

205 Tower Drive • Oldsmar • Florida • 34677 • 813.749.7168 • sales@coastalreliability.com

RELIABILITY REALIZED

JAN FEB MAR APR MAY JUN
JUL AUG SEP OCT NOV DEC

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

INDUSTRIAL & MUNICIPAL PUMPS • MECHANICAL SEALS • MECHANICAL PACKING
NON-METALLIC TANKS • HEAT EXCHANGERS • COMPRESSORS

RELIABILITY REALIZED

RELIABILITY **REALIZED**

205 Tower Drive
Oldsmar Florida 34677

(813) 749-7168 Office
(813) 749-7175 Fax

sales@coastalreliability.com
www.coastalreliability.com